Search results for "Equipment and services"

showing 8 items of 8 documents

The Athena X-ray Integral Field Unit (X-IFU)

2016

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.

Computer science[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyObservatoriesField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering7. Clean energy01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawObservatoryAthena Instrumentation Space telescopes X-ray spectroscopy X-ray Integral Field UnitAthena010303 astronomy & astrophysicsInstrumentation[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SpectroscopyHigh Energy Astrophysical Phenomena (astro-ph.HE)Equipment and servicesApplied MathematicsX-rayComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsProceedings of SPIE - the International Society for Optical EngineeringX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spectral resolutionFOS: Physical sciencesMinute of arcSpace telescopesTelescope0103 physical sciencesX-raysElectronicOptical and Magnetic Materials[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Spectral resolutionElectrical and Electronic Engineering010306 general physicsSpectroscopyInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingPixelAstrophysics - Astrophysics of GalaxiesAstrophysics of Galaxies (astro-ph.GA)X-ray Integral Field Unit[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Telescopes
researchProduct

Baseline design of the filters for the LAD detector on board LOFT

2014

The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESA's Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m 2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto …

SiliconCosmic VisionPhysics - Instrumentation and DetectorsSpectral resolutionSilicon drift detectorVisionAstrophysics::High Energy Astrophysical PhenomenaCollimatorsObservatoriesFOS: Physical sciencesCollimated lightlaw.inventionSettore FIS/05 - Astronomia E AstrofisicaOpticsObservatorylawX-raysSpectral resolutionphysics.ins-detInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsEquipment and servicesLead glassSensorsbusiness.industryDetectorAntenna apertureAstrophysics::Instrumentation and Methods for AstrophysicsCollimatorInstrumentation and Detectors (physics.ins-det)Microchannel platesbusinessAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

2014

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Observatories ; Sensors ; X-rays ; Equipment and services ; X-ray sourcesComputer scienceObservatoriesFOS: Physical sciencesX-ray sources01 natural sciences7. Clean energyX-rayLoftObservatoryRange (aeronautics)0103 physical sciencesX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic Engineering010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Compact Objects; Timing; X-ray; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringRemote sensingMillisecondEquipment and servicesCompact Objects010308 nuclear & particles physicsLarge area detectorSensorsApplied MathematicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron starAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

EDGE: explorer of diffuse emission and gamma-ray burst explosions

2009

How structures on various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE will trace the cosmic history of the baryons from the early generations of massive star by Gamma-Ray Burst (GRB) explosions, through the period of cluster formation, down to very low redshifts, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (Warm Hot Intragalactic Medium: WHIM). In addition EDGE, with its unprecedented observational capabilities, will provide key results on several other topics. The science is feasible with a medium class mission …

Vision[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Warm–hot intergalactic mediumAstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologySettore FIS/05 - Astronomia E AstrofisicaIntergalactic MediumWarm-Hot Intergalactic MediumX-rays Cosmology Clusters Gamma-ray bursts Warm-hot intergalactic medium Missions010303 astronomy & astrophysicsX-ray telescopesX-rays; Cosmology; Clusters; Gamma-ray bursts; Warm– hot intergalactic medium; MissionsPhysicsEquipment and servicesSatellite MissionSpectrometersAstrophysics (astro-ph)X-rays Cosmology Clusters Gamma-ray bursts Warm– hot intergalactic medium MissionsTemperatureAstrophysics::Instrumentation and Methods for AstrophysicsCosmologyGamma-ray burstsCosmic VisionSpectral resolutionGalaxy ClustersAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesWarm&ndashAstrophysics::Cosmology and Extragalactic AstrophysicsMissionshot intergalactic mediumAbsorptionNO010309 opticsX-rayClustersWarm–hot intergalactic mediumGalaxy groups and clusters0103 physical sciencesX-raysGalaxy groups and clustersImaging systems010306 general physicsGamma-ray burstWarm&ndashGalaxy clusterSpatial resolutionSensorsAstronomyX-rays clusters Gamma-Ray Bursts Warm-Hot Intergalactic Medium missionsAstronomy and AstrophysicsGalaxyRedshiftCluster13. Climate actionSpace and Planetary ScienceGamma-ray burstOptics for EUV, X-Ray, and Gamma-Ray Astronomy III. Edited by O'Dell, Stephen L.; Pareschi, Giovanni. Proceedings of the SPIE
researchProduct

The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

2014

“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy …

SimulationsSiliconWarm–hot intergalactic mediumField of viewOrbital mechanicsOpticsField spectroscopyGalactic astronomyX-raysElectronicAngular resolutionOptical and Magnetic MaterialsElectrical and Electronic EngineeringAnticoincidenceImage resolutionSpectroscopyPhysicsSpatial resolutionEquipment and servicesSpectrometerSpectrometersbusiness.industrySensorsApplied MathematicsDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsATHENAAnticoincidence; ATHENA; Cryogenic detectors; TES; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCryogenic detectorsTransition edge sensorbusinessTES
researchProduct

Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA

2014

ATHENA is an advanced X-ray observatory designed by a large European consortium to address the science theme "Hot and Energetic Universe" recently selected by ESA for L2 – the second Large-class mission within the Cosmic Vision science program (launch scheduled in 2028). One of the key instruments of the mission is the X-ray Integral Field Unit (X-IFU), an array of Transition Edge Sensor (TES) micro-calorimeters with high energy resolution (2.5 eV @ 6 keV) in the energy range 0.2÷12 keV, operating at the focal plane of a large effective area high angular resolution (5" HEW) grazing incidence X-ray telescope. The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated c…

CryostatCosmic VisionVisionShieldsX-ray telescopeGrazing incidencelaw.inventionTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicalawX-raysElectronicmicro-calorimeterOptical and Magnetic MaterialsElectrical and Electronic EngineeringX-ray telescopesPhysicsX-IFUSpatial resolutionSounding rocketEquipment and servicesbusiness.industrySensorsApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOptical Blocking FiltersComputer Science Applications1707 Computer Vision and Pattern RecognitionDetector arraysCondensed Matter PhysicsATHENAmissionsCultural heritageTransition edge sensorbusinessATHENA; micro-calorimeter; missions; Optical Blocking Filters; X-IFU; X-rays; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTelescopes
researchProduct

The X-ray Integral Field Unit (X-IFU) for Athena

2014

Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics princi…

PhysicsCosmic VisionEquipment and servicesSpectrometerSpectral resolutionSpectrometersX-ray opticsbusiness.industrySensorsVisionDetectorAstrophysics::Instrumentation and Methods for AstrophysicsField of viewOpticsCardinal pointParticlesSettore FIS/05 - Astronomia E AstrofisicaX-raysImaging systemsAngular resolutionSpectral resolutionElectronicsbusinessImage resolution
researchProduct